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Automated Analysis of Continuum Fields from Atomistic
Simulations Using Statistical Machine Learning

Aruna Prakash* and Stefan Sandfeld

Atomistic simulations of the molecular dynamics/statics kind are regularly used to
study small-scale plasticity. Contemporary simulations are performed with tens to
hundreds of millions of atoms, with snapshots of these configurations written out
at regular intervals for further analysis. Continuum scale constitutive models for
material behavior can benefit from information on the atomic scale, in particular in
terms of the deformation mechanisms, the accommodation of the total strain, and
partitioning of stress and strain fields in individual grains. Herein, a methodology
is developed using statistical data mining and machine learning algorithms to

automate the analysis of continuum field variables in atomistic simulations. Three
important field variables are focused on: total strain, elastic strain, and micro-

rotation. The results show that the elastic strain in individual grains exhibits a

unimodal lognormal distribution, while the total strain and microrotation fields
evidence a multimodal distribution. The peaks in the distribution of total strain are
identified with a Gaussian mixture model and methods to circumvent overfitting
problems are presented. Subsequently, the identified peaks are evaluated in terms
of deformation mechanisms in a grain, which, e.g., helps to quantify the strain for
which individual deformation mechanisms are responsible. The overall statistics
of the distributions over all grains are an important input for higher scale models,
which ultimately also helps to be able to quantitatively discuss the implications for

1. Introduction

Over the last decade, data science and
informatics (DSI) has evolved as the fourth
paradigm of scientific research,!! in
addition to the traditional paradigms of
experiments/empirical reasoning, theory/
modeling, and computation/simulation,
and has shown great potential for acceler-
ated materials development.>?) A charac-
teristic feature of approaches and
predictive methods from DSI is that they
focus strongly on the data itself while still
allowing to consider physical domain
knowledge. This essentially makes it
particularly attractive for increasing the
synergy between, e.g., experiments and
simulations. Challenges remain, nonethe-
less, concerning the availability of data
usually summarized through the “four Vs”
(volume, variety, veracity, and velocity)—
because algorithms and methods in DSI
typically require well-curated and sufficiently

information transfer to phenomenological models.
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large datasets.”! In recent years, high-

throughput experiments with improved

imaging techniques as well as large-scale

computations, e.g., atomistic simulations,
with high-performance computing resources have helped signifi-
cantly in this regard.l¥

Atomistic simulations have now become an invaluable tool in
the field of computational materials science and have been
particularly useful in advancing our knowledge on the mechani-
cal behavior of materials.!®! Such simulations are regularly used
to study defect-defect interactions,”™'% elastoplasticity,****!
fracture,"**®! irradiation,"*®! and other phenomena in
crystalline materials. Large-scale computations have allowed
researchers to study fundamental processes in nanoscale objects
like thin films,?®*"! nanoparticles,”** and nanowires,[%*>%¢!
and have, furthermore, facilitated experimentally informed
simulations,”” % resulting in an improved fundamental under-
standing of small-scale plasticity.

Studies with atomistic simulations on mnanocrystalline
materials—the focus of the current work—have been successful
in elucidating the deformation mechanisms and the role of grain
boundaries (GBs) in polycrystalline materials with grain sizes
below 100 nm.B>*" Such studies have demonstrated the role
of GBs as sources and sinks for dislocations, due to the lack
of nucleation sources like Frank-Read or spiral sources in indi-
vidual grains.***! Furthermore, the inverse Hall-Petch effect
characterized by a decrease in strength with decreasing grain size
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below roughly 10-20 nm is attributed to a change in deformation
mechanism from that dominated by intragrain dislocations to
grain boundary mediated deformation.**

Efforts have been made to link atomistic data with continuum
scale data and simulations.”>*>=*# This is particularly important
for the development of robust and reliable constitutive models
that are able to consider emergent properties from the nanoscale,
where, e.g., plasticity is governed by a paucity of dislocation sour-
ces and an increased fraction of grain boundaries, interfaces, and
surfaces. Continuum scale modeling of complex material phe-
nomena at the nanoscale hinges not only on the availability of
numerical values of parameters for constitutive models, but also
on information regarding the relative contribution of individual
mechanisms to the total deformation, and statistical data pertain-
ing to the distribution of fields like strain, stress, texture, etc.
Obtaining such information is generally tedious and time-
consuming due to a lack of automation.[**-3%4%!

Data mining and the use of machine learning algorithms have
become extremely popular in materials science covering many
different problem classes ranging from analysis of microscopy
data™ ! to design of alloys and metamaterials, accelerated
materials discovery, and machine learning-guided theory
development.***# Such machine learning methods can also
help overcome the problem of obtaining the aforementioned
information in an automated manner and facilitate knowledge
transfer between the atomistic and continuum scales.*’>%
Additionally, one of the challenges in machine learning of
“never enough data” is easily overcome because every atom is
essentially a data point—i.e., fields of interest, like total and
elastic strain, are calculated as properties of individual
atoms—and typical simulations involve millions to billions of
atoms. Mining such data will help understand the complex
relationships between the emerging local fields—such as
strain, stress, and texture—with the macroscopic response,
and support in the formulation of microstructure—property
relationships.’>%

In this work, we develop a methodology for automated
analysis and visualization of continuum fields like strains and
rotations in large-scale atomistic simulations. In particular, we
use data mining and statistical machine learning algorithms
to extract key features from distributions of total strain, elastic
strain, and rotation in individual grains. Generally, machine
learning tasks are classified into two broad categories:®!
descriptive and predictive. The former approach is of explanatory
nature and aims to identify patterns in the underlying data
based on correlations and trends, while the latter approach is
used to predict and foresee events induced by certain known
factors.

Herein, the focus in the development of this methodology is
primarily of descriptive nature. We develop an understanding of
unimodal distributions by identifying the mathematical form of
the distribution. For multimodal distributions, the values of indi-
vidual peaks are identified using a Gaussian mixture model
(GMM), wherein methods to circumvent overfitting problems
are presented. The individual peaks are then correlated with
the deformation mechanisms observed in a grain. Finally,
approaches to make the methodology a predictive one are briefly
discussed.
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2. Details on the Data Used

The data used in the current work are sourced from a tensile
simulation of a nanocrystalline thin film sample. The initial
structure, with a mean grain size of 15nm, is generated by
means of a constrained Voronoi tessellation (CVT)!"*** so as
to reduce nonequilibrium junctions.”® The initial dimensions
of the thin film are 180nm x 120nm x 15 nm (see Figure 1a).
The atomistic sample subsequently generated using the open
source toolbox nanoSCULPTP® contains ~19 Mio atoms. The
interatomic forces are modeled with an embedded atom method
(EAM) potential for AI®”! using a stable time increment of 1 fs.
The structure is relaxed using the fire algorithm in standard
molecular statics simulations up to a force norm of
1077 eVA™!, and subsequently equilibrated at 300 K for 20 ps.
All simulations are performed with the atomistic simulation code
IMD.P® Careful initial tests were conducted with the interatomic
potential to obtain numerical values of 45.8 (inv_tau_eta in IMD)
for the thermostat and 45.0 (inv_tau_xi in IMD) for the barostat.
Subsequently, constant pressure simulations are performed at
300 K using a Nosé—Hoover thermobarostat to ensure close to
zero global stresses in directions normal to the simulation box.

The relaxed and equilibrated structures are then subjected to
uniaxial tension at a constant strain rate of &= 10%s~! at 300 K in
the NPT ensemble. Uniaxial strain is modeled by continuously
scaling the atomic coordinates and the box length along the y
direction at a fixed rate while simultaneously allowing for con-
traction along the x direction using a Nosé-Hoover thermobaro-
stat. Periodic boundary conditions are imposed along the x and y
directions; free boundaries exist in the z direction along the
thickness of the film.

Snapshots are written out every 0.05% strain increment (time
increments of 5 ps). Each snapshot is a separate file in a simple
ASCII file format containing information on the position and
index of each atom. The index has no physical meaning and
has no bearing on the simulations itself. It is merely used to iden-
tify each atom uniquely and can hence be used to map an atom to
a particular grain in the initial configuration.

The so-obtained snapshot files are subsequently analyzed
using the open-source visualization tool Ovito.*® Defect struc-
tures are identified using the common neighbor analysis
(CNA) modifier.*” Local atomic strains are determined using
the atomic strain modifier, which calculates the deformation gra-
dient tensor F using the displacement of individual atoms, and
subsequently, the Green—Lagrange strain tensor E as follows
E=_(FF-1) 1)

This atomic strain tensor is then averaged over the neighbor-
hood of each atom using a cutoff (or smoothing) radius of 1 nm
to obtain an averaged total strain tensor per atom

_ SNEV
2V
where V denotes the volume of each atom as determined by a

Voronoi construction and E provides a measure of the total
strain. The choice of 1 nm for the smoothing radius is based on

)
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Figure 1. Atomistic sample used as data source in the current work: a) thin film sample in the undeformed configuration along with sample dimensions
and global directions. The loading direction (global y direction) is shown via gray arrows. Atoms are colored according to their grain number; b-d) Map of
Eum» Ay, and ES,, respectively, in individual grains in the deformed state after 10% applied strain. The rotation angle in (c) is in degrees. For further
statistical analysis, the distributions of these three quantities are analyzed over the domain of an individual grain.

previous studies on stress distribution in y /5’ microstructures.**!

In the current study, no significant differences were observed
between smoothing radii of 0.5 and 1.0 nm. Essentially, the value
of the smoothing radii must include enough neighbor shells to
remove any noise in the field of interest. Too large a value of the
smoothing radius smears out inhomogeneities, and in the limit-
ing case of smoothing radius larger than the sample dimensions,
the average response, i.e., the macroscopic strain tensor, is to be
expected.

The von Mises equivalent total strain E,,, is then computed
using the averaged strain tensor as follows!®"

1
Evm = \/Eiy + E%z + ng +E [(Exx - Eyy)2 + (Exx - Ezz)2 + (Eyy - Ezz)z]
@)

As F is already known, we may perform the polar decomposition
to obtain the rotation tensor R and the stretch tensor U as
F = RU. The so-computed rotation tensor is then averaged over
the a shell of next-nearest neighbors to obtain the averaged
rotation tensor R, and is expressed as a quaternion (q.qo)-
We now compute the incremental angle of rotation Ay, called
microrotation, as

Ay =2 - cos(gy) (4)

which provides a measure of the rotation experienced by an atom
in the deformed sample, with respect to the initial configuration.

The local elastic strain E¥' is computed using the elastic strain
modifier in Ovito and averaged with an identical procedure as for
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the Green—Lagrange strain tensor E. Essentially, Ovito computes
the local elastic deformation gradient F¢ at each atom by taking
into account the positions of the atoms in the local neighborhood
and comparing it to that of an ideal crystal structure. A value of
4.07 A is used as the lattice parameter for the ideal crystal struc-
ture. For close packed structures, 12 nearest neighbors are used
for the computation. Any distortion in comparison to the ideal
crystal is then captured by F¢, using which the local elastic strain
E¢ is computed. Subsequently, a von Mises equivalent elastic
strain is computed using an equivalent relation as in
Equation (3). For more details on the computation of the elastic
strain, the reader is referred to user manual of Ovito.[%%

The analyzed snapshots are now written out as individual files
in the IMD ASCII file format. Each file contains the original
snapshot data (position and index) appended with the a posteriori
calculated data via Ovito. Each column represents the distribu-
tion of a field quantity evaluated at discrete points given by
the atomic coordinates. For subsequent analysis, we restrict
ourselves to three columns: ShearStrain (von Mises equivalent
total strain E,,), DeltaRot (angle of rotation Ay), and ElasStrVM
(von Mises equivalent elastic strain ES,,). Figure 1b—d shows the
distribution of the three field quantities on a slice of the thin film
after 10% applied strain.

For further statistical analysis, these field quantities are ana-
lyzed over the domain of an individual grain. Only those atoms
identified as belonging to a perfect crystal symmetry, i.e., fcc,
hcp, etc., are used. All atoms are provided with a unique grain
number to identify the grain they belong to. This is done by using
the index of each atom and mapping it to the grain they belong to

© 2022 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

85U9D17 SUOLLLLOD BANERID |eatjdde au) Aq pausenoB a2 S9N YO ‘8sN 0 S3|NJ 10) Afeiq1 T 8UIIUO A3]IA UO (SUOIPLOD-PUE-SUIBILIOY A8 1MW Afe.q1 U UO//SANY) SUORIPUOD PUe WS | 84} 88S *[£202/T0/92] UO ARIqIT8UIIUO AB]IM *BILBD Up1easay HAWD LDIINC WnnuezsBunyosiod Aq 725002202 Wepe/zo0T 0T/I0p/wo A8 |IMAfeiq U1 juO//SANY WOy papeoiumod ‘ZT ‘2202 ‘879z.2ST


http://www.advancedsciencenews.com
http://www.aem-journal.com

ADVANCED
SCIENCE NEWS

ENGINEERING

www.advancedsciencenews.com

in the initial configuration. As a result, the definition of the
domain of the grain in the deformed configuration is identical
to that in the initial configuration.

Figure 2 shows the distribution of the three field quantities
ES., Em, and Ay in individual grains as 1D heat maps.
Representation of distributions as heat maps is an alternative
to the traditional methods of representation as histograms and
kernel density estimates (KDE). The latter methods require sig-
nificant amount of space for plotting the data of all grains, which
makes comparison of distributions over multiple grains a cum-
bersome operation. For instance, in the case of the current sam-
ple, which corresponds to a particular snapshot at 10% strain
from a single simulation, we obtain 366 plots for the three field
distributions in 122 grains. Plotting as heatmaps ensures mini-
mal space usage for all the plots—while qualitatively keeping all
the details—and facilitates easy comparison of distributions.
Nonetheless, for applications that go beyond mere visualization,
e.g., determination of the mathematical form of the distribution
or a correlation of the distribution with deformation mechanisms
in the grain, representation of distributions as histograms or
KDEs becomes inevitable.

In general, comparison of plots of multiple grains demands
that the set of units used on the ordinate and abscissa axes be
identical in all plots. As the distributions are significantly inho-
mogeneous, manual tuning of the plot limits, which is usually
done by inspecting the distributions of only a few grains, can
result in truncation of outlying peaks in multimodal distribu-
tions. On the other hand, merely using the maximum and mini-
mum value of the data array would result in tails of a distribution
with frequency values close to zero dominating the plots of the
distributions. This is a nontrivial problem and needs to be solved
in an objective manner; otherwise the comparability between
plots would suffer. Here, we propose a method for a reasonable,
automated determination of the plot range, the details of which
are provided in the Supporting Information. Using this auto-
mated approach, the distributions are plotted as histograms in
Figure S2-S4, Supporting Information. The plots show multiple
peaks in the distributions of E,,, and Ay, evidencing the multi-
modal nature of the fields. By comparison, the distribution of
E¢, is, by and large, unimodal.

The multimodal nature of the distributions of E,,,, and Ay can
be explained as follows. In nanocrystalline materials, dislocations
are nucleated at grain boundaries due to the paucity of intragra-
nular dislocation sources. Such dislocations then traverse
through the grain before being absorbed by the opposite grain
boundary. As a result, atoms that experience the movement of
such dislocations evidence higher strain than those located else-
where in the grain. The same argument also holds true for the
orientation distribution within a single grain. Consequently, the
distributions of the total strain and the orientation display a mul-
timodal character. By contrast, all atoms undergo elastic defor-
mation. As a result, the distribution of elastic strain is likely
to be unimodal.

3. Methodology

In order to statistically analyze the field distributions in individ-
ual grains, we differentiate between unimodal and multimodal
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distributions. Our aim is to determine the location of individual
peaks in the multimodal distributions of total strain (E,,,) and
microrotation (Ay) fields. This information is then used to
understand the mechanistic source of the inhomogeneity in
the distribution. For the case of unimodal distributions, we
aim to identify the mathematical form of a function(al) that
can statistically represent the unimodal distribution under con-
sideration, over all grains in the polycrystal. At a later stage, such
statistics over multiple samples, strain states, and materials can
be compared in order to assess the transferability and tractability
of such a mathematical representation to higher length-scale
simulation frameworks like crystal plasticity or strain gradient
models.

3.1. Mathematical Form of Unimodal Distributions

To identify the mathematical function that best describes a unim-
odal distribution, we first fit an array of functions to the data of
individual grains. The stats library implemented in the SciPy
packagel®! is used to define various functions and to fit them
to the given dataset using the maximum likelihood estimation.®*
For the purpose of this work, we only use a subset of all available
functions in the stats library. The chosen candidates are those
that are likely to reflect the unimodal distribution under consid-
eration. A total of 32 functions are used in the current work
(see Figure 3 and Table A1 for the function names). The reader
is referred to the official documentation of the stats library!®*! for
the mathematical formulation of the individual functions.

Once the parameters of individual functions that result in the
best fit of the given distribution (in an individual grain) are
identified, an assessment of the function that provides a good
description over all grains needs to be made. For this purpose,
we compute the sum of squared errors (SSE) of the fits with indi-
vidual functions with respect to the data of individual grains.
A decision on the best fit function is then made by evaluating
the statistics of SSE of individual functions over all grains.

3.2. GMM for Multimodal Distributions

We employ a GMM to identify the peaks in a multimodal distri-
bution. GMMs belong to the class of unsupervised machine
learning algorithms that are generally used to cluster data points
that share certain common characteristics.®" It is a probabilistic
model in which the clustering function is a mixture of several
Gaussian functions. As a result, we obtain the probability with
which each data point can be assigned to a particular
Gaussian function or cluster. GMMs can be deemed as a gener-
alization of the well-known k-means clustering which is a so-
called hard clustering method where each point is assigned
definitively to a cluster without an uncertainty measure to qualify
this association.!**®! By contrast, GMMs incorporate informa-
tion on not just the probability with which a data point can
be associated with a cluster, but also the covariance structure
of the data, in addition to the centers of the individual
Gaussians.

Formally, a GMM is defined as the weighted sum of K com-
ponent Gaussian densities as follows
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Figure 2. Distributions of elastic strain ES}, (top row), total strain E,,, (middle row), and microrotation Ay (bottom row) as heat maps, calculated using

200 bins over the corresponding data range. The colormap shows the volume fraction, i.e., the number of atoms in a bin as a fraction of the total number

of atoms in the grain. Each horizontal heat map shows the distribution of the corresponding field in a single grain. The grain number is noted in the white

box in each heat map.
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Figure 3. Results of fitting mathematical functions to the distribution of ES, in two grains 5 and 6. For the exact mathematical expressions of the

individual functions, the reader is referred to ref. [63].

p(x) = ZWiN(XL"‘i: oi)
i=1

where p(x) is the probability of a data point x, w; are the weights,
and N (x|y;, 0;) are the component Gaussian densities, which in
D-dimensions are given by

Nl %) = e~ s xw) |
©

with the mean vector p; and the covariance matrix %;. The mix-
ture weights w; are defined as the partition of unity, i.e.

K

=1

1
In the case of a 1D data set, Equation (6) reduces to

1 — )
N (x|ui, 07) = a-—\/ﬂeXp (* %)

1

@)

For a fixed number of Gaussian components, the parameters
ui, 0, and w; can be learned using the expectation-maximization
(EM) algorithm. EM is a numerical realization of maximum
likelihood estimation and has the convenient property that the
algorithm tends toward a local optimum with every iteration.

In the current work, the classical non-Bayesian GMM together
with the EM algorithm as implemented in scikit-learn(®® is used.
To identify the individual peaks, we fit GMMs with different
number of components to the multimodal distribution under
consideration, and choose the best fit using certain criteria.
The value of individual peaks is then simply the mean of the cor-
responding Gaussian component. More details on the applica-
tion of GMM to the atomistic dataset under consideration are
provided in Section 4.2.
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4, Results

4.1. Mathematical Form of Elastic Strain Distribution

Unimodal distributions, like that of ES, here, can be evaluated
and better understood via the functional form defining the
distribution in individual grains. To identify the mathematical
function that best fits the distribution of ES},, we fit various func-
tions to the distribution of E$h, in each grain using a maximum
likelihood estimation of the distribution parameters. Note that
the domain of a grain is defined as in the initial configuration.
A total of 32 mathematical functions are used for the fitting
purpose.

Figure 3 shows exemplarily the result of the fitting procedure
for grains 5 and 6. The results for all grains are shown in
Figure S5, Supporting Information. To assess the best fit among
all grains, we use the SSE between the actual distribution and the
mathematical function as the metric. The distribution of SSE val-
ues over all grains, for the 32 mathematical functions used in the
current work, is shown as a box plot in Figure 4.

The mathematical functions that best fit the distribution of
ESh, must be those that have low mean (denoted as M) and

median (denoted as M) values of the SSE obtained from the
fit to all grains. We combine the two values as

MM /(M + M), so as to equally weight both the mean and
the median values, in order to arrive at a decision on the best
fit. Table 1 lists the top five functions that result from the
decision-making process, together with their standard deviation
and kurtosis. The best fit is evidently obtained with the
johnsonsb function, which is the bounded S, distribution in
the Johnson!®”! family of distributions. A complete list of statis-
tical values of SSE for all functions is provided in Table Al.

4.2. Peak Values in a Multimodal Distribution via GMM

For the analysis of multimodal distributions, like that in Ay and
E.m, we need to obtain the values of individual peaks. This is
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Figure 4. Statistics of SSE of individual functions fit to the distributions of ES, in each grain. Top row: Distribution of SSE obtained from the fit of each
function over all grains as a box plot. The points marked in red denote the mean of the corresponding distribution. Bottom row: Standard deviation and

kurtosis of the SSE distribution of individual functions.

Table 1. Statistics of SSE for the top five functions that result in the best fit
of the distribution of ES, in individual grains.

Function name ~ Mean [M]  Median [M] MM Std. Dev.  Kurtosis
MM

johnsonsb 1869.76 1406.28 802.62 1653.27 9.27

beta 2103.13 1594.28 906.84 1806.70 7.61

johnsonsu 2465.08 1716.04 1011.73 2203.57 8.34

pearson3 2471.07 1786.44 1036.86 2089.86 5.73

gamma 273212 1780.97 1078.16 2755.70 10.49

achieved by fitting a GMM with multiple clusters—here, varying
from 1 to 6—to the distributions in individual grains.

Figure 5 shows the result of such a fit, exemplarily, for two
grains 29 and 118. The results for all grains are shown in
Figure S6 and S7, Supporting Information. To assess the best
fit, we use the Bayesian information criterion (BIC) and choose
the fit that shows the least value of BIC (referred to as min (BIC)).
For most grains, however, the BIC value decreases continuously
with increasing number of clusters, and the best fit is obtained
with six clusters (see Figure 6). This description, in some cases, is
indicative of overfitting, or a high variance fit, as seen, for exam-
ple, in grain 29 for Ay (see Figure 5b).

To overcome the problem of overfitting and reduce the num-
ber of GMM clusters, we present two different approaches. For
both these approaches, we first compute the clusters based on the
min (BIC) criterion. We then evaluate intercluster distances in
terms of the mean values of individual clusters. If this distance
is less than a specific threshold, then 1) we reduce the number of
clusters by one and reevaluate intercluster distances. This is done
iteratively until all intercluster distances are above the specified
threshold. 2) We merge all clusters whose intercluster distances

Adv. Eng. Mater. 2022, 24, 2200574 2200574 (7 of 13)

are below the threshold. The mean values, weights, and variances
of each cluster are directly recalculated from the original fit.

The chosen threshold in this work is 5% of the data range of
the field variable under consideration. The number of clusters
recalculated by the two methods is also shown in Figure 6. It
is evident that in most cases the number of clusters predicted
by all three methods is the same, indicating that the optimal
fit based on the least value of BIC suffices for most grains, at
least in the current sample.

For cases where the min (BIC) approach results in overfitting,
the two methods mentioned above result in an almost identical
reduced number of clusters. Although for a few grains, the reduce
method results in the fewest number of clusters, in such cases the
approach seems to sometimes suffer from underfitting as seen,
for example, in the distribution of Ay in grain 118 (see Figure 5b).

The mean values of all clusters as predicted by the three
approaches are shown in Figure 7. These distributions provide
a general measure of the inhomogeneity of the corresponding
field distribution in the polycrystalline sample. For the case of
Eym, two primary peaks are observed at values of 0.03 and
0.09. Further peaks are observed at approximate strain values
0f 0.2, 0.26, 0.36, and 0.56. For the case of Ay, two major peaks
are observed at ~3° and 7°, a further significant peak is observed
at 15°, and a minor peak at roughly 25°.

5. Discussion

The aim of the current work is to present a methodology to sta-
tistically understand and estimate distributions of continuum
fields in atomistic simulations. A fundamental application of
the methodology described in the current work is in obtaining
an improved mechanistic understanding of the deformation
behavior of polycrystalline materials. Specifically, this method

© 2022 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH
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Figure 8. Mechanisms associated with the different peaks identified by
fitting GMM to the distribution of E,,,, in grain 65. The inset in the graph
shows the distribution of E,, in the atomistic configuration (only a thin
slice used here for the purpose of visualization). The pictures below show
the atoms of the corresponding peaks.

GMM procedure, we are only interested in the values of the indi-
vidual peaks and not the form of the local distribution itself,
which can deviate from a Gaussian distribution. The first peak
in the distribution denotes the elastic strain in the grain and is
predominantly governed by atoms that have not yet experienced
any dislocation activity or GB motion. The second peak is seem-
ingly governed by atoms that form the boundary between the
purely elastic region and atoms that have experienced the activity
of at least one dislocation. A small contribution to this peak is
also from atoms that have experienced GB migration. The third
and fourth peaks denote those atoms that have seen the activity of
a single dislocation. The fifth and sixth peaks denote regions with
multiple dislocation activity. These include not only planes where
two or more dislocations have traversed (encircled in red in
Figure 8), but also twinned regions (encircled in blue in
Figure 8). A small portion of these atoms, particularly those asso-
ciated with peak 6, includes dislocation movement within
twinned regions and the intersection nodes of slip planes.
This correlation of individual peaks in multimodal distribu-
tions, e.g., of Eyp,, with deformation mechanisms can be gener-
alized to the deformation behavior of nanocrystalline materials.
As explained in Section 2, the multimodal nature of E,,, stems
from the lack of dislocation generating sources inside grains.
Consequently, dislocations need to be nucleated inside individ-
ual grains. Such nucleation events are usually observed at highly
stressed regions close to GBs and triple junctions. Once a dislo-
cation nucleates, it traverses through the entire grain before
being absorbed at another GB. Atoms that experience the move-
ment of such a dislocation evidence higher values of strain than
atoms located far away from the dislocation activity. Merely con-
sidering the above two groups of atoms would result in two dif-
ferent peaks in the strain distribution: the first peak for a lower
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strain value containing all atoms that have not seen any disloca-
tion activity, and a second peak for a higher strain value contain-
ing atoms that have witnessed a dislocation activity. We hence
conclude that the “fingerprints” observed in the statistics and
their correlation with certain deformation mechanisms can be
extended to the deformation of other nanocrystalline materials
as well. The individual peaks may, however, point to different
mechanisms, like, e.g., in Ag or Cu where deformation is domi-
nated by partial dislocations.

A point must be made here on the assessment of the defor-
mation itself, which in the current work is based on the defor-
mation gradient (F)/®!l as implemented in Ovito. We then use the
polar decomposition F=RU to determine the microrotation,
i.e., the rotation from the initial undeformed configuration.
The approach is similar to that used in the literature (see,
e.g., refs. [13,36,40,68]). For the current study, this definition
of the deformation gradient, F, is seemingly sufficient to identify
the “fingerprints” in the statistics. A recent extension to calculate
the higher order expansion of F°! may be helpful in a more
detailed analysis of the deformation behavior.

A second application pertains to bridging length scales with
computational frameworks using information transfer. Higher
scale models such as, e.g., crystal plasticity frameworks, strain
gradient models, or dislocation dynamics simulations often
require information from lower length scales. These models
are typically based on simplifications with respect to various
aspects of the microstructure, e.g., grain boundaries, slip transfer
through GBs, and influence of grain neighborhood. For instance,
in classical crystal plasticity simulations, influence of GB and GB
processes is usually neglected. Atomistic simulations, on the
other hand, contain this information intrinsically. The distribu-
tion of field variables from atomistic simulations can be used as
input in crystal plasticity frameworks to better reflect the
influence of GBs and grain neighborhood on the deformation
behavior in any individual grain. Such an approach is used,
for instance, in the quantized crystal plasticity approach.””
The methodology presented in the current work allows one to
input distributions as mathematical functions obtained from sta-
tistics of multiple grains and configurations. For instance, the
parameters of johnsonsb, i.e., the bounded S, distribution of
the Johnson family of distributions, can be used to input the
distribution of elastic strain in individual grains, e.g., via
FE2AT,”Y allowing for a better comparison and bridging of
atomistic and continuum scale simulations. The methodology
can be further extended to include, e.g., nonlocal effects and/
or to capture GB-related process explicitly by extending the data
mining.

Our results show that the johnsonsb function is able to well
describe the elastic strain distribution in individual grains.
This function has the following mathematical form!”?

flx,a,b) = ﬁ(p(a +blog (T"x)) 9)

where the a and b are parameters with a,b>0 and ¢ is the
normal probability distribution function. It is thus evident that
the distribution of elastic strain follows a lognormal nature.
Taking a look at the mathematical forms of top five best fit func-
tions tabulated in Table 1 shows in fact a close-to-lognormal
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nature of the data, suggesting a multiplicative influence of sour-
ces of variation. This lognormal nature of elastic strain in nano-
crystalline materials is in line with experimental observations of
the total strain'”*! but seemingly in contrast to the normal distri-
bution nature of elastic strain in coarse-grained materials”*
observed after 10% applied strain in crystal plasticity simulations.
This suggests a stronger coupling between elastic and plastic
strains in nanocrystalline materials, and the need for more accu-
rate constitutive models for continuum crystal plasticity simula-
tions at the nanoscale. The coupling between elastic and plastic
strains is ostensibly a result of the discrete nature of dislocation
nucleation and propagation due to the absence of dislocation
multiplication sources in grains.

A final point of discussion is the domain that is considered as
a grain. In the current work, we estimate this domain to be com-
posed of all atoms that formed the grain in the initial unde-
formed configuration. At the level of strain considered, i.e.,
10% tensile strain, we do not observe any large-scale changes
in the grain boundary topology. This observation is also in line
with previous studies on the deformation behavior of nanocrys-
talline materials."*”%”%! For specimens where large-scale GB
motion is observed, and/or for larger strain values, careful con-
sideration must be given to the domain that defines a grain.
Identifying grains in deformed configurations of atomistic sim-
ulations using orientations of atoms as a measure is a challeng-
ing task.”” Once such a domain is identified, the methodology
presented in this work can be applied directly to assess the par-
titioning of fields in individual grains.

We hence conclude that the methodology presented in the cur-
rent work can lead to improved mechanistic understanding of
elastoplastic deformation behavior, and help bridge length scales
in computational frameworks via information passing. The
method also helps automatically identify the deformation
mechanisms in individual grains and quantify the relative strain
contribution of individual mechanisms. The methodology pre-
sented here can also be extended to include nonlocal effects
and/or GB-related processes explicitly by improving the data
mining framework.

6. Conclusions

In this work, we present a methodology for automated analysis of
field distributions using statistical machine learning and data
mining algorithms. The application of the algorithms is demon-
strated on the distributions of elastic strain, total strain, and
microrotation that have developed in individual grains in a nano-
crystalline Al sample after 10% tensile strain. The distribution of
elastic strain is of lognormal nature and is identified as the
bounded S, system of the Johnson family of distributions.
The peak values in the multimodal distributions of total strain
and microroration are identified viaa GMM. We evaluate the dis-
tribution of such peak values over the entire sample and discuss
the mechanistic underpinnings in terms of dislocation activity
and twinning that result in such local peak values. With this
method, the analysis of multiple snapshots across multiple sim-
ulations of different materials can be easily performed in an auto-
mated manner.
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Appendix

Table A1. Statistics of SSE obtained for the fit of individual functions.

Function name  Mean [M]  Median [,T/T] v Std. Dev.  Kurtosis
M+M
alpha 4243.73 2588.33 1607.74 6321.11 54.38
beta 2103.13 1594.28 906.84 1806.70 7.61
betaprime 19799.69 3279.92 2813.80 37975.08 9.41
Cauchy 20535.29 19873.80 10099.56 4565.77 1.18
chi2 82891.06 3725.39 3565.16 342916.10 106.58
erlang 2736.39 1790.18 1082.20 2740.05 10.51
exponnorm 3149.72 2523.49 1401.02 2634.91 7.85
exponweib 27300.25 2325.51 2142.97 86182.90 22.05
fatiguelife 2878.82 1867.99 1132.89 2673.36 7.29
frechet_| 54099.54 3525.85 3310.12 86510.67 0.88
gamma 2732.12 1780.97 1078.16 2755.70 10.49
gausshyper 6029.60 3160.76 2073.71 10937.98 49.56
genextreme 6963.81 2087.40 1606.00 19587.21 18.97
gennorm 5038.20 3167.90 1944.96 4335.82 1.20
invgamma 3160.37 2131.07 1272.81 3204.16 10.43
invgauss 5134.56 2639.74 1743.42 10354.83 48.58
invweibull 33330.54 11788.77 8708.60 39006.47 0.74
johnsonsb 1869.76 1406.28 802.62 1653.27 9.27
johnsonsu 2465.08 1716.04 1011.73 2203.57 8.34
loggamma 6232.27 5063.40 2793.68 4629.79 0.97
lognorm 3060.14 2267.71 1302.50 2724.10 6.57
Maxwell 7997.27 5455.23 3243.04 7386.89 2.98
nakagami 110203.01 3024.75 2943.95 600178.01 99.75
norm 6172.50 4985.81 2758.03 4556.46 0.66
pearson3 2471.07 1786.44 1036.86 2089.86 5.73
powerlognorm 2955.93 1743.78 1096.77 4751.09 60.77
powernorm inf 2029.85 - - -
Rayleigh 24373.71 20302.90 11076.42 13987.62 0.57
recipinvgauss 3936.44 2509.62 1532.56 3892.25 3.78
rice 5002.95 3680.83 2120.62 3948.73 1.37
t 5561.50 4553.68 2503.69 4120.68 0.80
weibull_max 54099.54 3525.85 3310.12 86510.67 0.88
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